

Mapping Urban Housing Density in Accra, Ghana with Sentinel-2

Copernicus for GI professionals

f Copernicus EU

Copernicus EU

www.copernicus.eu

Introduction

Copernicus

Presentation By: Stella Ofori-Ampofo, CERSGIS – University of Ghana

Introduction of the problem

- With growing cities and changing demographics, rapid population growth of urban areas challenges proper planning.
- To ensure well-being and productivity of inhabitants, there is the need for adequate infrastructure and services e.g. water supply, housing and sanitation facilities, etc.
- It is therefore imperative to understand and monitor changes in urban density over time to help policy makers make informed decisions regarding resource allocation.

Introduction of the use case

• The density of urban development has very significant implications for the upfront capital cost and ongoing operational cost associated with the provision of urban infrastructure.

• It also has very important implications for the provision of public transport services and the use of walking and cycling as means of commuting, with consequences for greenhouse gas emissions

Outline of methodology

- The steps below outline how we mapped urban density using SENTINEL-2 imagery
- Download Level-1C SENTINEL-2 MSI from the Sentinel Scientific Data Hub (<u>https://scihub.copernicus.eu/dhus</u>)
- Data preparation(stacking 10m bands i.e. bands 2,3,4 and 8, and image subsetting/clipping, band combination)
- Unsupervised image classification (based on ISODATA algorithm)
- Reclassifying/Recoding spectral classes into 5 information classes. (<u>high, medium, low density, vegetation, water</u>)

Hardware and software

Copernicus

• Hardware :

- i7 Laptop with 2.4GHz speed
- 1 Terabyte storage space
- 12GB Ram
- Software : ESRI ArcGIS
- Data :
 - Level-1C SENTINEL-2 satellite imagery obtained from
 - Sentinel Scientific Data Hub in .jp2 format
 - Project area extent in .shp (vector format)

Technical issues and resolutions

• Technical Issues

- Limited internet bandwidth for downloading image
- Huge amount of storage space required to store & process imagery for regional level analysis
- Difficulty in interpreting image metadata
- Cloud cover over areas with high level of precipitation. Cloud mask unable to identify some cloud areas.

Possible Resolution

- Provision of an online service to define and download only an extent of imagery rather than the entire scene
- Ability to download specific bands from Scientific Data Hub
- Provision of guidelines to interpreting image metadata

Video demonstration

Copernicus

The video demonstrates how we mapped urban density using SENTINEL-2 imagery. By observing similar spectral reflectances exhibited by pixels in the images, we identified three (3) levels of urban density: high, medium and low density built-up areas.

Link to demonstration : CERSGIS Urban Density Mapping

